13 research outputs found

    Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording

    Get PDF
    Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only similar to 10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes

    La reducción de los costes de transporte en España (1800-1936)

    Get PDF
    This paper describes the improvement that took place in the Spanish transport system between 1800 and 1936. The text points out that, despite the investment efforts that were carried out between 1840 and 1855, the process of transport cost reduction only experienced substantial progress after 1855. The largest transport cost decrease of the period under consideration took place during the three decades between 1855 and the great depression of the late nineteenth century, through the substitution of the railroad for the traditional transport means in the main routes of the country, as well as through the gradual reduction of the price of railway transport. The process went on more slowly later on, thanks to the construction of additional raillway lines (until 1895) and the enlargement of the secondary road network. The process of transport cost reduction accelerated again from the 1920s onwards, thanks to the diffusion of the automobile technology

    Wearable physiological sensors reflect mental stress state in office-like situations

    Get PDF
    Timely mental stress detection can help to prevent stress-related health problems. The aim of this study was to identify those physiological signals and features suitable for detecting mental stress in office-like situations. Electrocardiogram (ECG), respiration, skin conductance and surface electromyogram (sEMG) of the upper trapezius muscle were measured with a wearable system during three distinctive stress tests. The protocol contained stress tests that were designed to represent office-like situations. Generalized Estimating Equations were used to classify the data into rest and stress conditions. We reached an average classification rate of 74.5%. This approach may be used for continuous stress measurement in daily office life to detect mental stress at an early stage

    Low-power robust beat detection in ambulatory cardiac monitoring

    No full text
    \u3cp\u3eWith new advances in ambulatory monitoring new challenges appear due to degradation in signal quality and limitations in hardware requirements. Existing signal analysis methods should be re-evaluated in order to adapt to the restrictive requirements of these new applications. With this motivation, we chose a robust beat detection algorithm and optimized it further to be running in an embedded platform within a cardiac monitoring sensor node. The algorithm was designed in floating point in Matlab and evaluated in order to study its performance under a wide range of conditions. The initial PC version of the algorithm obtained a good performance under a wide variety of conditions (Se=99.65% and +P=99.79% on the MIT/BIH arrhythmia database and Se=99.88%, +P=99.93% on our own database with ambulatory data). In this study, the algorithm is adapted and further optimized to work in real time on an embedded digital processor, while keeping this performance without degradation. The run-time memory usage of the application was of 150 KB with an execution time of 1.5 million cycles and an average power consumption of 494 μW for an ECG of 3 seconds length and sampling frequency of 198 Hz. The algorithm implementation in a general purpose processor will put significant limits on the performance in terms of power consumption. We propose possible specifications for an application-optimized processor for more efficient ECG analysis.\u3c/p\u3

    Towards Mental Stress Detection Using Wearable Physiological Sensors

    Get PDF
    Early mental stress detection can prevent many stress related health problems. This study aimed at using a wearable sensor system to measure physiological signals and detect mental stress. Three different stress conditions were presented to a healthy subject group. During the procedure, ECG, respiration, skin conductance, and EMG of the trapezius muscles were recorded. In total, 19 physiological features were calculated from these signals. After normalization of the feature values and analysis of correlations among these features, a subset of 9 features was selected for further analysis. Principal component analysis reduced these 9 features to 7 principal components (PCs). Using these PCs and different classifiers, a consistent classification accuracy between stress and non stress conditions of almost 80% was found. This suggests that a promising feature subset was found for future development of a personalized stress monitor

    Comb-shaped polymer-based Dry electrodes for EEG/ECG measurements with high user comfort

    No full text
    Soft, comfortable polymer-based dry electrodes are fabricated. Impedance and biopotential measurements are carried out to compare the performance of conventional gel electrodes with our dry electrodes. The impedance of our dry electrodes is reduced by adding more conductive additives to the polymer material. To further lower the impedance, two skin pretreatment techniques are evaluated regarding their influence on skin impedance. However, these techniques are found to have only temporary beneficial effects. Finally biopotential measurements (both ECG and EEG) are performed using our soft polymer electrodes. The ECG signal acquired with both gel and our polymer electrodes demonstrates high degree of similarity. Therefore, heart beat detection is straightforward. To enable monitoring of EEG signals with smaller amplitudes, our dry electrodes need to be combined with pre-amplifiers. Initial EEG tests show that the alpha waves are clearly identifiable with the dry electrodes when subjects close their eyes. Based on the results, combining with sophisticated signal acquisition electronics, the dry electrodes provide a high user comfort solution for high quality biopotential measurements, even on very hairy skin.status: publishe

    Polymer-based dry electrodes for high user comfort ECG/EEG measurements

    No full text
    Conventional ECG and EEG gel electrodes are widely used in health care applications. These electrodes deliver high-quality signals due to their low impedance, but they have important drawbacks, such as time-consuming electrode set-up for EEG followed by a painful removal, skin irritation by the gel, signal degradation due to drying of the gel, etc. To solve this, various types of dry electrodes attract attention last years. Hard metal dry electrodes show low impedance, but most are not comfortable for the patient. Flexible polymer-based electrodes are presented in this work to avoid the disadvantages of gel electrodes while significantly improving user comfort. Different additives are mixed in these polymers and optimized to improve various relevant properties. An important electrode property is low impedance, which directly affects signal quality and influences the sensitivity to motion artifacts. The polymer composition influences also the mechanical properties, as well as the material flow during molding and hence the electrode fabrication yield. Moreover, various electrode shapes are tested to achieve appropriate mechanical properties and increase user comfort. For ECG & EEG applications, the best performing dry electrodes are selected and results are compared with wet electrode signals .status: publishe

    A 160μW 8-Channel Active Electrode System for EEG Monitoring

    No full text
    This paper presents an active electrode system for gel-free biopotential EEG signal acquisition. The system consists of front-end chopper amplifiers and a back-end common-mode feedback (CMFB) circuit. The front-end AC-coupled chopper amplifier employs input impedance boosting and digitally-assistedoffset trimming. The former increases the input impedance of the active electrode to 2 G at 1 Hz and the latter limits the chopping induced output ripple and residual offset to 2 mV and 20 mV respectively. Thanks to chopper stabilization, the active electrode achieves 0.8 μVrms (0.5-100 Hz) input referred noise. The use of a back-end CMFB circuit further improves the CMRR of the active electrode readout to 82 dB at 50 Hz. Both front-end and back-endcircuits are implemented in a 0.18 μm CMOS process and the total current consumption of an 8-channel readout system is 88 μA from 1.8 V supply. EEG measurements using the proposed active electrode system demonstrate its benefits compared to passive electrode systems, namely reduced sensitivity to cable motion artifacts and mains interference.Accepted Author ManuscriptElectronic Instrumentatio

    Soft, Comfortable Polymer Dry Electrodes for high Quality ECG and EEG Recording

    No full text
    Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only ~10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes
    corecore